Merkel Cell Polyomavirus Small T Antigen Mediates Microtubule Destabilization To Promote Cell Motility and Migration
نویسندگان
چکیده
UNLABELLED Merkel cell carcinoma (MCC) is an aggressive skin cancer of neuroendocrine origin with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) causes the majority of MCC cases due to the expression of the MCPyV small and large tumor antigens (ST and LT, respectively). Although a number of molecular mechanisms have been attributed to MCPyV tumor antigen-mediated cellular transformation or replication, to date, no studies have investigated any potential link between MCPyV T antigen expression and the highly metastatic nature of MCC. Here we use a quantitative proteomic approach to show that MCPyV ST promotes differential expression of cellular proteins implicated in microtubule-associated cytoskeletal organization and dynamics. Intriguingly, we demonstrate that MCPyV ST expression promotes microtubule destabilization, leading to a motile and migratory phenotype. We further highlight the essential role of the microtubule-associated protein stathmin in MCPyV ST-mediated microtubule destabilization and cell motility and implicate the cellular phosphatase catalytic subunit protein phosphatase 4C (PP4C) in the regulation of this process. These findings suggest a possible molecular mechanism for the highly metastatic phenotype associated with MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer with a high metastatic potential. However, the molecular mechanisms leading to virally induced cancer development have yet to be fully elucidated. In particular, no studies have investigated any potential link between the virus and the highly metastatic nature of MCC. We demonstrate that the MCPyV small tumor antigen (ST) promotes the destabilization of the host cell microtubule network, which leads to a more motile and migratory cell phenotype. We further show that MCPyV ST induces this process by regulating the phosphorylation status of the cellular microtubule-associated protein stathmin by its known association with the cellular phosphatase catalytic subunit PP4C. These findings highlight stathmin as a possible biomarker of MCC and as a target for novel antitumoral therapies.
منابع مشابه
Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation
Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood...
متن کاملStathmin drives virus-induced metastasis.
Merkel cell carcinoma (MCC) is a rare but highly metastatic neuroendocrine skin cancer [1]. Approximately 80% of MCC are caused by the recently described Merkel cell polyomavirus (MCPyV). Since its discovery in 2008 by the Chang and Moore laboratory, this small DNA virus has been the subject of intensive research. In particular, efforts have focussed on elucidating the mechanisms by which the v...
متن کاملMerkel cell polyomavirus small T antigen is oncogenic in transgenic mice
Merkel cell carcinoma (MCC) is a rare and deadly neuroendocrine skin tumor frequently associated with clonal integration of a polyomavirus, Merkel cell polyomavirus (MCPyV), and MCC tumor cells express putative polyomavirus oncoprotein small T antigen (sTAg) and truncated large T antigen. Here, we show robust transforming activity of sTAg in vivo in a panel of transgenic mouse models. Epithelia...
متن کاملImproved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus.
A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increas...
متن کاملMerkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis
Merkel cell carcinoma (MCC) frequently contains integrated copies of Merkel cell polyomavirus DNA that express a truncated form of Large T antigen (LT) and an intact Small T antigen (ST). While LT binds RB and inactivates its tumor suppressor function, it is less clear how ST contributes to MCC tumorigenesis. Here we show that ST binds specifically to the MYC homolog MYCL (L-MYC) and recruits i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 89 شماره
صفحات -
تاریخ انتشار 2015